Vanadium Oxide-Based Cathode for Supercapacitor Applications

Vanadium Oxide-Based Cathode for Supercapacitor Applications

  • Hairus Abdullah
Publisher:Springer NatureISBN 13: 9789819752430ISBN 10: 9819752434

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹3,503Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹39.49Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Vanadium Oxide-Based Cathode for Supercapacitor Applications is written by Hairus Abdullah and published by Springer Nature. It's available with International Standard Book Number or ISBN identification 9819752434 (ISBN 10) and 9789819752430 (ISBN 13).

This book highlights the use/application of Vanadium Oxide as a Supercapacitor (SC) material using the electrodeposition method. The preparation methods, material characterization, and performance testing of VOx-based SC are thoroughly discussed. Electrolyte solutions from VCl3 and other metal precursors are used to form V3O5 electrodes on nickel foam (NF). The cathode can deliver a specific capacitance value of 5689 F/g. The work is improved by depositing V3O5 film on Ni(OH)2 to form a bilayer coating on NF substrate. Ni(OH)2 with a nano-sheet structure is used for the purpose of increasing the specific surface area of V3O5 layer which can achieve specific capacitance of 7500 F/g, the energy density of 167 Wh/kg, and the power density of 199 W/kg. After 10,000 charge-discharge cycles, the capacitance retention rate is 93%. Finally, a full cell SC is assembled using the bilayer electrode and active carbon. The asymmetric and symmetric full cells performed the specific capacitances of 390 F/g and 846 F/g, the energy densities of 286 Wh/kg and 170 Wh/kg, and the power densities of 1149 W/kg and 602 W/g, respectively. After 10,000 charge-discharge cycles, the capacitance retention rates of asymmetric and symmetric full cells are 97% and 95%, respectively.