Crack Theory and Edge Singularities

Crack Theory and Edge Singularities

  • D. V. Kapanadze
  • Bert-Wolfgang Schulze
Publisher:Springer Science & Business MediaISBN 13: 9789401703239ISBN 10: 940170323X

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹6,898Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹79.2Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Crack Theory and Edge Singularities is written by D. V. Kapanadze and published by Springer Science & Business Media. It's available with International Standard Book Number or ISBN identification 940170323X (ISBN 10) and 9789401703239 (ISBN 13).

Boundary value problems for partial differential equations playa crucial role in many areas of physics and the applied sciences. Interesting phenomena are often connected with geometric singularities, for instance, in mechanics. Elliptic operators in corresponding models are then sin gular or degenerate in a typical way. The necessary structures for constructing solutions belong to a particularly beautiful and ambitious part of the analysis. Cracks in a medium are described by hypersurfaces with a boundary. Config urations of that kind belong to the category of spaces (manifolds) with geometric singularities, here with edges. In recent years the analysis on such (in general, stratified) spaces has become a mathematical structure theory with many deep relations with geometry, topology, and mathematical physics. Key words in this connection are operator algebras, index theory, quantisation, and asymptotic analysis. Motivated by Lame's system with two-sided boundary conditions on a crack we ask the structure of solutions in weighted edge Sobolov spaces and subspaces with discrete and continuous asymptotics. Answers are given for elliptic sys tems in general. We construct parametrices of corresponding edge boundary value problems and obtain elliptic regularity in the respective scales of weighted spaces. The original elliptic operators as well as their parametrices belong to a block matrix algebra of pseudo-differential edge problems with boundary and edge conditions, satisfying analogues of the Shapiro-Lopatinskij condition from standard boundary value problems. Operators are controlled by a hierarchy of principal symbols with interior, boundary, and edge components.