Process and Device Simulation for MOS-VLSI Circuits

Process and Device Simulation for MOS-VLSI Circuits

  • P. Antognetti
  • D.A. Antoniadis
  • Robert W. Dutton
  • W.G. Oldham
Publisher:Springer Science & Business MediaISBN 13: 9789400968424ISBN 10: 9400968426

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹3,503Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹43.44Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Process and Device Simulation for MOS-VLSI Circuits is written by P. Antognetti and published by Springer Science & Business Media. It's available with International Standard Book Number or ISBN identification 9400968426 (ISBN 10) and 9789400968424 (ISBN 13).

P. Antognetti University of Genova, Italy Director of the NATO ASI The key importance of VLSI circuits is shown by the national efforts in this field taking place in several countries at differ ent levels (government agencies, private industries, defense de partments). As a result of the evolution of IC technology over the past two decades, component complexi ty has increased from one single to over 400,000 transistor functions per chip. Low cost of such single chip systems is only possible by reducing design cost per function and avoiding cost penalties for design errors. Therefore, computer simulation tools, at all levels of the design process, have become an absolute necessity and a cornerstone in the VLSI era, particularly as experimental investigations are very time-consuming, often too expensive and sometimes not at all feasible. As minimum device dimensions shrink, the need to understand the fabrication process in a quanti tati ve way becomes critical. Fine patterns, thin oxide layers, polycristalline silicon interco~ nections, shallow junctions and threshold implants, each become more sensitive to process variations. Each of these technologies changes toward finer structures requires increased understanding of the process physics. In addition, the tighter requirements for process control make it imperative that sensitivities be unde~ stood and that optimation be used to minimize the effect of sta tistical fluctuations.