Nearrings, Nearfields and K-Loops

Nearrings, Nearfields and K-Loops

  • Gerhard Saad
  • Momme Johs Thomsen
Publisher:Springer Science & Business MediaISBN 13: 9789400914810ISBN 10: 9400914814

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹6,898Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹79.2Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Nearrings, Nearfields and K-Loops is written by Gerhard Saad and published by Springer Science & Business Media. It's available with International Standard Book Number or ISBN identification 9400914814 (ISBN 10) and 9789400914810 (ISBN 13).

This present volume is the Proceedings of the 14th International Conference on Near rings and Nearfields held in Hamburg at the Universitiit der Bundeswehr Hamburg, from July 30 to August 06, 1995. This Conference was attended by 70 mathematicians and many accompanying persons who represented 22 different countries from all five continents. Thus it was the largest conference devoted entirely to nearrings and nearfields. The first of these conferences took place in 1968 at the Mathematische For schungsinstitut Oberwolfach, Germany. This was also the site of the conferences in 1972, 1976, 1980 and 1989. The other eight conferences held before the Hamburg Conference took place in eight different countries. For details about this and, more over, for a general historical overview of the development of the subject, we refer to the article "On the beginnings and development of near-ring theory" by G. Betsch [3]. During the last forty years the theory of nearrings and related algebraic struc tures like nearfields, nearmodules, nearalgebras and seminearrings has developed into an extensive branch of algebra with its own features. In its position between group theory and ring theory, this relatively young branch of algebra has not only a close relationship to these two more well-known areas of algebra, but it also has, just as these two theories, very intensive connections to many further branches of mathematics.