Contributions to Current Challenges in Mathematical Fluid Mechanics(English, Hardcover, unknown)

Contributions to Current Challenges in Mathematical Fluid Mechanics(English, Hardcover, unknown)

  • unknown
Publisher:Springer Science & Business MediaISBN 13: 9783764371043ISBN 10: 3764371048

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart ₹ 3225SnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹484Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books GOAudible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Contributions to Current Challenges in Mathematical Fluid Mechanics(English, Hardcover, unknown) is written by unknown and published by Birkhauser Verlag AG. It's available with International Standard Book Number or ISBN identification 3764371048 (ISBN 10) and 9783764371043 (ISBN 13).

This volume consists of five research articles, each dedicated to a significant topic in the mathematical theory of the Navier-Stokes equations, for compressible and incompressible fluids, and to related questions. All results given here are new and represent a noticeable contribution to the subject. One of the most famous predictions of the Kolmogorov theory of turbulence is the so-called Kolmogorov-obukhov five-thirds law. As is known, this law is heuristic and, to date, there is no rigorous justification. The article of A. Biryuk deals with the Cauchy problem for a multi-dimensional Burgers equation with periodic boundary conditions. Estimates in suitable norms for the corresponding solutions are derived for "large" Reynolds numbers, and their relation with the Kolmogorov-Obukhov law are discussed. Similar estimates are also obtained for the Navier-Stokes equation. In the late sixties J. L. Lions introduced a "perturbation" of the Navier- Stokes equations in which he added in the linear momentum equation the hyper- dissipative term (-Ll),Bu, f3 ~ 5/4, where Ll is the Laplace operator. This term is referred to as an "artificial" viscosity. Even though it is not physically moti- vated, artificial viscosity has proved a useful device in numerical simulations of the Navier-Stokes equations at high Reynolds numbers. The paper of of D. Chae and J. Lee investigates the global well-posedness of a modification of the Navier- Stokes equation similar to that introduced by Lions, but where now the original dissipative term -Llu is replaced by (-Ll)O:u, 0 S Ct < 5/4.