Knowledge Acquisition, Modeling and Management

Knowledge Acquisition, Modeling and Management

  • Rudi Studer
Publisher:SpringerISBN 13: 9783540487753ISBN 10: 3540487751

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹5,523Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹43.44Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Knowledge Acquisition, Modeling and Management is written by Rudi Studer and published by Springer. It's available with International Standard Book Number or ISBN identification 3540487751 (ISBN 10) and 9783540487753 (ISBN 13).

Past, Present, and Future of Knowledge Acquisition This book contains the proceedings of the 11th European Workshop on Kno- edge Acquisition, Modeling, and Management (EKAW ’99), held at Dagstuhl Castle (Germany) in May of 1999. This continuity and the high number of s- missions re?ect the mature status of the knowledge acquisition community. Knowledge Acquisition started as an attempt to solve the main bottleneck in developing expert systems (now called knowledge-based systems): Acquiring knowledgefromahumanexpert. Variousmethodsandtoolshavebeendeveloped to improve this process. These approaches signi?cantly reduced the cost of - veloping knowledge-based systems. However, these systems often only partially ful?lled the taskthey weredevelopedfor andmaintenanceremainedanunsolved problem. This required a paradigm shift that views the development process of knowledge-based systems as a modeling activity. Instead of simply transf- ring human knowledge into machine-readable code, building a knowledge-based system is now viewed as a modeling activity. A so-called knowledge model is constructed in interaction with users and experts. This model need not nec- sarily re?ect the already available human expertise. Instead it should provide a knowledgelevelcharacterizationof the knowledgethat is requiredby the system to solve the application task. Economy and quality in system development and maintainability are achieved by reusable problem-solving methods and onto- gies. The former describe the reasoning process of the knowledge-based system (i. e. , the algorithms it uses) and the latter describe the knowledge structures it uses (i. e. , the data structures). Both abstract from speci?c application and domain speci?c circumstances to enable knowledge reuse.