Innovations in Fuzzy Clustering(English, Hardcover, Sato-Ilic Mika)

Innovations in Fuzzy Clustering(English, Hardcover, Sato-Ilic Mika)

  • Sato-Ilic Mika
Publisher:Springer Science & Business MediaISBN 13: 9783540343561ISBN 10: 3540343563

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart ₹ 3471SnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹944Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books GOAudible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Innovations in Fuzzy Clustering(English, Hardcover, Sato-Ilic Mika) is written by Sato-Ilic Mika and published by Springer-Verlag Berlin and Heidelberg GmbH & Co. KG. It's available with International Standard Book Number or ISBN identification 3540343563 (ISBN 10) and 9783540343561 (ISBN 13).

Clustering has been around for many decades and located itself in a uniquepositionasafundamentalconceptualandalgorithmiclandmark of data analysis. Almost since the very inception of fuzzy sets, the role and potential of these information granules in revealing and describing structureindatawasfullyacknowledgedandappreciated.Asamatter of fact, with the rapid growth of volumes of digital information, the role of clustering becomes even more visible and critical. Furthermore given the anticipated human centricity of the majority of artifacts of digitaleraandacontinuousbuildupofmountainsofdata,onebecomes fully cognizant of the growing role and an enormous potential of fuzzy sets and granular computing in the design of intelligent systems. In therecentyearsclusteringhasundergoneasubstantialmetamorphosis. Frombeinganexclusivelydata drivenpursuit,ithastransformeditself into a vehicle whose data centricity has been substantially augmented by the incorporation of domain knowledge thus giving rise to the next generation of knowledge-oriented and collaborative clustering. Interestingly enough, fuzzy clustering exhibits a dominant role in many developments of the technology of fuzzy sets including fuzzy modeling, fuzzy control, data mining, pattern recognition, and image processing. When browsing through numerous papers on fuzzy m- eling we can witness an important trend of a substantial reliance on fuzzy clustering being regarded as the general development tool. The same central position of fuzzy clustering becomes visible in pattern classi?ers and neurofuzzy systems. All in all, it becomes evident that further progress in fuzzy clustering is of vital relevance and bene?t to the overall progress of the area of fuzzy sets and their applications.