* Price may vary from time to time.
* GO = We're not able to fetch the price (please check manually visiting the website).
Machine and Deep Learning in Oncology, Medical Physics and Radiology is written by Issam El Naqa and published by Springer Nature. It's available with International Standard Book Number or ISBN identification 3030830470 (ISBN 10) and 9783030830472 (ISBN 13).
This book, now in an extensively revised and updated second edition, provides a comprehensive overview of both machine learning and deep learning and their role in oncology, medical physics, and radiology. Readers will find thorough coverage of basic theory, methods, and demonstrative applications in these fields. An introductory section explains machine and deep learning, reviews learning methods, discusses performance evaluation, and examines software tools and data protection. Detailed individual sections are then devoted to the use of machine and deep learning for medical image analysis, treatment planning and delivery, and outcomes modeling and decision support. Resources for varying applications are provided in each chapter, and software code is embedded as appropriate for illustrative purposes. The book will be invaluable for students and residents in medical physics, radiology, and oncology and will also appeal to more experienced practitioners and researchers and members of applied machine learning communities.