* Price may vary from time to time.
* GO = We're not able to fetch the price (please check manually visiting the website).
The Navier–Stokes Problem is written by Alexander G. Ramm and published by Morgan & Claypool Publishers. It's available with International Standard Book Number or ISBN identification 1636391230 (ISBN 10) and 9781636391236 (ISBN 13).
The main result of this book is a proof of the contradictory nature of the Navier‒Stokes problem (NSP). It is proved that the NSP is physically wrong, and the solution to the NSP does not exist on ℝ+ (except for the case when the initial velocity and the exterior force are both equal to zero; in this case, the solution 𝑣(𝑥, 𝑡) to the NSP exists for all 𝑡 ≥ 0 and 𝑣(𝑥, 𝑡) = 0). It is shown that if the initial data 𝑣0(𝑥) ≢ 0, 𝑓(𝑥,𝑡) = 0 and the solution to the NSP exists for all 𝑡 ϵ ℝ+, then 𝑣0(𝑥) := 𝑣(𝑥, 0) = 0. This Paradox proves that the NSP is physically incorrect and mathematically unsolvable, in general. Uniqueness of the solution to the NSP in the space 𝑊21(ℝ3) × C(ℝ+) is proved, 𝑊21(ℝ3) is the Sobolev space, ℝ+ = [0, ∞). Theory of integral equations and inequalities with hyper-singular kernels is developed. The NSP is reduced to an integral inequality with a hyper-singular kernel.