
* Price may vary from time to time.
* GO = We're not able to fetch the price (please check manually visiting the website).
Combinatorial Convexity(English, Paperback, Barany Imre) is written by Barany Imre and published by American Mathematical Society. It's available with International Standard Book Number or ISBN identification 1470467097 (ISBN 10) and 9781470467098 (ISBN 13).
This book is about the combinatorial properties of convex sets, families of convex sets in finite dimensional Euclidean spaces, and finite points sets related to convexity. This area is classic, with theorems of Helly, Caratheodory, and Radon that go back more than a hundred years. At the same time, it is a modern and active field of research with recent results like Tverberg's theorem, the colourful versions of Helly and Caratheodory, and the $(p, q)$ theorem of Alon and Kleitman. As the title indicates, the topic is convexity and geometry, and is close to discrete mathematics. The questions considered are frequently of a combinatorial nature, and the proofs use ideas from geometry and are often combined with graph and hypergraph theory. The book is intended for students (graduate and undergraduate alike), but postdocs and research mathematicians will also find it useful. It can be used as a textbook with short chapters, each suitable for a one- or two-hour lecture. Not much background is needed: basic linear algebra and elements of (hyper)graph theory as well as some mathematical maturity should suffice.