
* Price may vary from time to time.
* GO = We're not able to fetch the price (please check manually visiting the website).
Bordered Heegaard Floer Homology(English, Paperback, Lipshitz Robert) is written by Lipshitz Robert and published by American Mathematical Society. It's available with International Standard Book Number or ISBN identification 1470428881 (ISBN 10) and 9781470428884 (ISBN 13).
The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type $D$) is a module over the algebra and the other of which (type $A$) is an $\mathcal A_\infty$ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the $\mathcal A_\infty$ tensor product of the type $D$ module of one piece and the type $A$ module from the other piece is $\widehat{HF}$ of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for $\widehat{HF}$. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.