Orthogonal and Symplectic $n$-level Densities

Orthogonal and Symplectic $n$-level Densities

  • A. M. Mason
  • N. C. Snaith
Publisher:American Mathematical Soc.ISBN 13: 9781470426859ISBN 10: 1470426854

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹5,148Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹78Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Orthogonal and Symplectic $n$-level Densities is written by A. M. Mason and published by American Mathematical Soc.. It's available with International Standard Book Number or ISBN identification 1470426854 (ISBN 10) and 9781470426859 (ISBN 13).

In this paper the authors apply to the zeros of families of -functions with orthogonal or symplectic symmetry the method that Conrey and Snaith (Correlations of eigenvalues and Riemann zeros, 2008) used to calculate the -correlation of the zeros of the Riemann zeta function. This method uses the Ratios Conjectures (Conrey, Farmer, and Zimbauer, 2008) for averages of ratios of zeta or -functions. Katz and Sarnak (Zeroes of zeta functions and symmetry, 1999) conjecture that the zero statistics of families of -functions have an underlying symmetry relating to one of the classical compact groups , and . Here the authors complete the work already done with (Conrey and Snaith, Correlations of eigenvalues and Riemann zeros, 2008) to show how new methods for calculating the -level densities of eigenangles of random orthogonal or symplectic matrices can be used to create explicit conjectures for the -level densities of zeros of -functions with orthogonal or symplectic symmetry, including all the lower order terms. They show how the method used here results in formulae that are easily modified when the test function used has a restricted range of support, and this will facilitate comparison with rigorous number theoretic -level density results.