Nitrogen NMR

Nitrogen NMR

  • M. Witanowski
Publisher:Springer Science & Business MediaISBN 13: 9781468481754ISBN 10: 1468481754

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹3,503Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹43.44Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Nitrogen NMR is written by M. Witanowski and published by Springer Science & Business Media. It's available with International Standard Book Number or ISBN identification 1468481754 (ISBN 10) and 9781468481754 (ISBN 13).

To date nitrogen NMR has been discussed in research papers and review articles throughout the scientific literature. It has been our aim in preparing this book to provide a comprehen sive account of the widely spread applications of nitrogen NMR. The relevant literature has been surveyed from the beginnings of NMR until early 1972. The steady annual growth in the number of references cited since 1965 is ample evidence of the ever increasing importance of the subject. Sufficient theoretical and experimental background is given for an understanding of the applications dealt with in later chapters. The basic principles of NMR are developed with a theoretical approach to chemical shifts and spin-spin coupling constants, particular emphasis being given to nitrogen nuclei. Following this the experimental aspects of nitrogen NMR are adequately described. Special emphasis is given to the observable effects of the nuclear quadrupole moment of the 14 N nucleus. It is appro priate that this topic be dealt with in depth since quadrupolar interactions frequently dominate the information available from a study of the 14 N nucleus and other nuclei spin coupled to it. The applications of nitrogen chemical shift data to organic and inorganic molecules are covered in two extensive chapters which include the effects of paramagnetism on nitrogen NMR.