Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors

Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors

  • T.C. McGill
  • C.M. Sotomayor Torres
  • W. Gebhardt
Publisher:Springer Science & Business MediaISBN 13: 9781468456615ISBN 10: 146845661X

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks WagonGOBook ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹43.44Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Growth and Optical Properties of Wide-Gap II–VI Low-Dimensional Semiconductors is written by T.C. McGill and published by Springer Science & Business Media. It's available with International Standard Book Number or ISBN identification 146845661X (ISBN 10) and 9781468456615 (ISBN 13).

This volume contains the Proceedings of the NATO Advanced Research Workshop on "Growth and Optical Properties of Wide Gap II-VI Low Dimensional Semiconductors", held from 2 - 6 August 1988 in Regensburg, Federal Republic of Germany, under the auspices of the NATO International Scientific Exchange Programme. Semiconducting compounds formed by combining an element from column II of the periodic table with an element from column VI (so called II-VI Semiconductors) have long promised many optoelectronic devices operating in the visible region of the spectrum. However, these materials have encountered numerous problems including: large number of defects and difficulties in obtaining p- and n-type doping. Advances in new methods of material preparation may hold the key to unlocking the unfulfilled promises. During the workshop a full session was taken up covering the prospects for wide-gap II-VI Semiconductor devices, particularly light emitting ones. The growth of bulk materials was reviewed with the view of considering II-VI substrates for the novel epitaxial techniques such as MOCVD, MBE, ALE, MOMBE and ALE-MBE. The controlled introduction of impurities during non-equilibrium growth to provide control of the doping type and conductivity was emphasized.