Oxygen Radicals in Biology and Medicine

Oxygen Radicals in Biology and Medicine

  • Michael Simic
Publisher:Springer Science & Business MediaISBN 13: 9781468455687ISBN 10: 1468455680

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹7,024Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹79.2Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Oxygen Radicals in Biology and Medicine is written by Michael Simic and published by Springer Science & Business Media. It's available with International Standard Book Number or ISBN identification 1468455680 (ISBN 10) and 9781468455687 (ISBN 13).

This book is based on the papers presented at the "Fourth International Congress on Oxygen Radicals (4-ICOR)," held June 27 - July 3, 1987, at the University of California, La Jolla. The chapters deal with the phenomena associated with highly reactive oxygen species (hydroxy, peroxy, alkoxy, aroxy, and superoxide radicals, as well as singlet oxygen) and their peroxidation products (hydrogen peroxide, hydroperoxides, peroxides, and epoxides) as they relate to the fields of chemistry, food technology, nutrition, biology, pharmacology, and medicine. The kinetics, energetics, and mechanistic aspects of the reactions of these species and the interrelationship of oxygen radicals (or any other free radicals) and peroxidized products have been emphasized. Special attention is focused on the mechanisms of the generation of free radicals and peroxy products in biosystems and on the adverse effects of these radicals and products in humans. The topics span the continuum from the simple chemistry of model systems to the complex considerations of clinical medicine. The book also explores the mechanisms of agents that protect against free radicals and peroxy products in vitro and in vivo. These agents include antioxidants used in materials, food antioxidants, physiological antioxidants, and antioxienzymes (SOD, glutathione peroxidase, and catalases). The use of these inhibitors to prevent damage to organs being prepared for transplantation, thereby maintaining the quality of transplanted organs and/or extending their "shelf-life," also is examined.