* Price may vary from time to time.
* GO = We're not able to fetch the price (please check manually visiting the website).
Association Rule Hiding for Data Mining is written by Aris Gkoulalas-Divanis and published by Springer Science & Business Media. It's available with International Standard Book Number or ISBN identification 1441965696 (ISBN 10) and 9781441965691 (ISBN 13).
Privacy and security risks arising from the application of different data mining techniques to large institutional data repositories have been solely investigated by a new research domain, the so-called privacy preserving data mining. Association rule hiding is a new technique in data mining, which studies the problem of hiding sensitive association rules from within the data. Association Rule Hiding for Data Mining addresses the problem of "hiding" sensitive association rules, and introduces a number of heuristic solutions. Exact solutions of increased time complexity that have been proposed recently are presented, as well as a number of computationally efficient (parallel) approaches that alleviate time complexity problems, along with a thorough discussion regarding closely related problems (inverse frequent item set mining, data reconstruction approaches, etc.). Unsolved problems, future directions and specific examples are provided throughout this book to help the reader study, assimilate and appreciate the important aspects of this challenging problem. Association Rule Hiding for Data Mining is designed for researchers, professors and advanced-level students in computer science studying privacy preserving data mining, association rule mining, and data mining. This book is also suitable for practitioners working in this industry.