Data-Driven Evolutionary Modeling in Materials Technology

Data-Driven Evolutionary Modeling in Materials Technology

  • Nirupam Chakraborti
Publisher:CRC PressISBN 13: 9781000635829ISBN 10: 1000635821

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹10,855Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books GOAudible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Data-Driven Evolutionary Modeling in Materials Technology is written by Nirupam Chakraborti and published by CRC Press. It's available with International Standard Book Number or ISBN identification 1000635821 (ISBN 10) and 9781000635829 (ISBN 13).

Due to efficacy and optimization potential of genetic and evolutionary algorithms, they are used in learning and modeling especially with the advent of big data related problems. This book presents the algorithms and strategies specifically associated with pertinent issues in materials science domain. It discusses the procedures for evolutionary multi-objective optimization of objective functions created through these procedures and introduces available codes. Recent applications ranging from primary metal production to materials design are covered. It also describes hybrid modeling strategy, and other common modeling and simulation strategies like molecular dynamics, cellular automata etc. Features: Focuses on data-driven evolutionary modeling and optimization, including evolutionary deep learning. Include details on both algorithms and their applications in materials science and technology. Discusses hybrid data-driven modeling that couples evolutionary algorithms with generic computing strategies. Thoroughly discusses applications of pertinent strategies in metallurgy and materials. Provides overview of the major single and multi-objective evolutionary algorithms. This book aims at Researchers, Professionals, and Graduate students in Materials Science, Data-Driven Engineering, Metallurgical Engineering, Computational Materials Science, Structural Materials, and Functional Materials.