Normal Forms and Unfoldings for Local Dynamical Systems

Normal Forms and Unfoldings for Local Dynamical Systems

  • James Murdock
Publisher:Springer Science & Business MediaISBN 13: 9780387217857ISBN 10: 0387217851

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹3,503Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹43.44Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Normal Forms and Unfoldings for Local Dynamical Systems is written by James Murdock and published by Springer Science & Business Media. It's available with International Standard Book Number or ISBN identification 0387217851 (ISBN 10) and 9780387217857 (ISBN 13).

The subject of local dynamical systems is concerned with the following two questions: 1. Given an n×n matrix A, describe the behavior, in a neighborhood of the origin, of the solutions of all systems of di?erential equations having a rest point at the origin with linear part Ax, that is, all systems of the form x ? = Ax+··· , n where x? R and the dots denote terms of quadratic and higher order. 2. Describethebehavior(neartheorigin)ofallsystemsclosetoasystem of the type just described. To answer these questions, the following steps are employed: 1. A normal form is obtained for the general system with linear part Ax. The normal form is intended to be the simplest form into which any system of the intended type can be transformed by changing the coordinates in a prescribed manner. 2. An unfolding of the normal form is obtained. This is intended to be the simplest form into which all systems close to the original s- tem can be transformed. It will contain parameters, called unfolding parameters, that are not present in the normal form found in step 1. vi Preface 3. The normal form, or its unfolding, is truncated at some degree k, and the behavior of the truncated system is studied.