Computational Modelling of Nanomaterials

Computational Modelling of Nanomaterials

  • Panagiotis Grammatikopoulos
Publisher:ElsevierISBN 13: 9780128214985ISBN 10: 0128214988

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹10,028Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹156Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Computational Modelling of Nanomaterials is written by Panagiotis Grammatikopoulos and published by Elsevier. It's available with International Standard Book Number or ISBN identification 0128214988 (ISBN 10) and 9780128214985 (ISBN 13).

Due to their small size and their dependence on very fast phenomena, nanomaterials are ideal systems for computational modelling. This book provides an overview of various nanosystems classified by their dimensions: 0D (nanoparticles, QDs, etc.), 1D (nanowires, nanotubes), 2D (thin films, graphene, etc.), 3D (nanostructured bulk materials, devices). Fractal dimensions, such as nanoparticle agglomerates, percolating films and combinations of materials of different dimensionalities are also covered (e.g. epitaxial decoration of nanowires by nanoparticles, i.e. 0D+1D nanomaterials). For each class, the focus will be on growth, structure, and physical/chemical properties. The book presents a broad range of techniques, including density functional theory, molecular dynamics, non-equilibrium molecular dynamics, finite element modelling (FEM), numerical modelling and meso-scale modelling. The focus is on each method's relevance and suitability for the study of materials and phenomena in the nanoscale. This book is an important resource for understanding the mechanisms behind basic properties of nanomaterials, and the major techniques for computational modelling of nanomaterials. - Explores the major modelling techniques used for different classes of nanomaterial - Assesses the best modelling technique to use for each different type of nanomaterials - Discusses the challenges of using certain modelling techniques with specific nanomaterials