Shallow Impurity Centers in Semiconductors

Shallow Impurity Centers in Semiconductors

  • A. Baldereschi
  • R. Resta
Publisher:ElsevierISBN 13: 9780080984599ISBN 10: 0080984592

Paperback & Hardcover deals ―

Amazon IndiaGOFlipkart GOSnapdealGOSapnaOnlineGOJain Book AgencyGOBooks Wagon₹384Book ChorGOCrosswordGODC BooksGO

e-book & Audiobook deals ―

Amazon India GOGoogle Play Books ₹58.36Audible GO

* Price may vary from time to time.

* GO = We're not able to fetch the price (please check manually visiting the website).

Know about the book -

Shallow Impurity Centers in Semiconductors is written by A. Baldereschi and published by Elsevier. It's available with International Standard Book Number or ISBN identification 0080984592 (ISBN 10) and 9780080984599 (ISBN 13).

Shallow Impurity Centers in Semiconductors presents the proceedings of the Second International Conference on Shallow Impurity Centers/Fourth Trieste IUPAP-ICTP Semiconductor Symposium, held at the International Center for Theoretical Physics in Trieste, Italy, on July 28 to August 1, 1986. The book presents the perspectives of some of the leading scientists in the field who address basic physical aspects and device implications, novel phenomena, recent experimental and theoretical techniques, and the behavior of impurities in new semiconductor materials. Organized into 22 chapters, the book begins with an overview of the early years of shallow impurity states before turning to a discussion of progress in spectroscopy of shallow centers in semiconductors since 1960. It then looks at theoretical and experimental aspects of hydrogen diffusion and shallow impurity passivation in semiconductors, along with optical excitation spectroscopy of isolated double donors in silicon. The book methodically walks the reader through recent research on double acceptors using near-, mid-, and far-infrared spectroscopy, the far-infrared absorption spectrum of elemental shallow donors and acceptors in germanium, and impurity spectra in stress-induced uniaxial germanium using Zeeman spectroscopy. Other papers focus on the theoretical properties of hydrogenic impurities in quantum wells, lattice relaxations at substitutional impurities in semiconductors, shallow bound excitons in silver halides, and the electronic structure of bound excitons in semiconductors. The book concludes with a chapter that reviews picosecond spectroscopy experiments performed in III-V compounds and alloy semiconductors. This volume will be useful to physicists and researchers who are working on shallow impurity centers in semiconductor physics.